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Variation in faecal microbiota in 
a group of horses managed at 
pasture over a 12-month period
Shebl E. Salem  1,2, Thomas W. Maddox3, Adam Berg4, Philipp Antczak5, Julian M. Ketley4, 
Nicola J. Williams6 & Debra C. Archer6,7

Colic (abdominal pain) is a common cause of mortality in horses. Change in management of horses 
is associated with increased colic risk and seasonal patterns of increased risk have been identified. 
Shifts in gut microbiota composition in response to management change have been proposed as one 
potential underlying mechanism for colic. However, the intestinal microbiota in normal horses and 
how this varies over different seasons has not previously been investigated. In this study the faecal 
microbiota composition was studied over 12 months in a population of horses managed at pasture 
with minimal changes in management. We hypothesised that gut microbiota would be stable in this 
population over time. Faecal samples were collected every 14 days from 7 horses for 52 weeks and the 
faecal microbiota was characterised by next-generation sequencing of 16S rRNA genes. The faecal 
microbiota was dominated by members of the phylum Firmicutes and Bacteroidetes throughout. 
Season, supplementary forage and ambient weather conditions were significantly associated with 
change in the faecal microbiota composition. These results provide important baseline information 
demonstrating physiologic variation in the faecal microbiota of normal horses over a 12-month period 
without development of colic.

Colic (abdominal pain) is a common cause of death in horses and is a key health concern for horse owners1. 
Multiple epidemiological studies have investigated risk factors for colic and have identified a number of modi-
fiable and non-modifiable risk factors. Knowledge of factors that can be modified allow preventive strategies to 
be devised to reduce the incidence of colic2. Consistently reported factors that increase the likelihood of colic are 
related to changes in management such as feeding a new batch of forage, a change in type of forage, a change in 
type and amount of grain-based feed, decreased access to pasture and increased time spent stabled3–6. It has been 
proposed that dietary changes associated with these changes may alter the colonic microflora, inducing changes 
in colonic pH and volatile fatty acid production, predisposing horses to colic5,7.

Colic has been shown to have a seasonal pattern which differs between different populations of horses and 
between different types of colic8. There is a growing body of evidence to suggest that changes in the horse hindgut 
microbial communities (gut microbiota) in response to diet change9, feeding a high-concentrate diet10,11, changes 
in access to pasture12 and transportation13 may play a role in the relationship between these known risk factors 
for colic and colic risk. Currently, it is unknown whether stability over time is a primary feature of these microbial 
populations, particularly under constant management conditions. A single study has investigated stability of fae-
cal microbiota of ponies fed a commercial diet14. This study demonstrated that bacterial populations were stable 
over the two-time periods investigated, but there was significant variation between individuals.
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The objectives of the current study were to determine if stability is an integral feature of the horse gut micro-
biota in a population of normal horses kept solely at pasture over a 52-week period, without other management 
changes such as stabling and provision of concentrate feed, and to investigate if ambient weather conditions such 
as rainfall and temperature had any effect on these microbial populations. This would provide important baseline 
information needed to determine if these changes are different in horses that develop colic.

Methods
Animals. The study population consisted of 7 horses that were managed on the same grass paddock year-
round (see Supplementary Table S1). The horses were healthy and had no history of change in diet, turnout, 
transportation, medical conditions nor had any medications been administered in the 30-day period prior to the 
start of sample collection. None of the horses had a history of colic in the previous 12 months nor had undergone 
any form of abdominal surgery. Horses had free access to grass and water without administration of concentrate 
feed or other dietary supplements. During the months of the year when the quality of the grass was insufficient to 
provide adequate nutrition, horses received supplementary ad lib haylage.

Sample collection. The aim was to investigate changes in the equine gut microbiome over a full 12-month 
period, to take into account seasonal variation in pasture and ambient weather conditions. Horses were sampled 
every 14 days between April 2014 and April 2015, contributing 27 sampling points (T1–T27) (see Supplementary 
Fig. S1). Samples (approximately 200 g each) were collected from the ground immediately following observed 
defecation from each identified horse and were placed into sealable plastic bags prior to being placed in storage at 
−80 °C within 2–6 hours of collection. To ensure consistency of the time of the day when samples were collected, 
the start of each visit to the field was fixed at 0900 hours. Only n = 6 horses contributed samples at all sampling 
occasions, as one horse was euthanised after T4 due to injury. Samples collected at T15 were excluded as they were 
mistakenly stored at 4 °C for a week prior to freezing.

Parasite testing. Horses were tested for gastrointestinal parasite burdens twice during the study. The first 
faecal worm egg count testing was concurrent with T1 while the second test was concurrent with T21. The results 
of the worm egg count are provided in Supplementary Table S1. An anthelmintic preparation containing moxe-
dectin and praziquantel (Equest Pramox, Zoetis, UK) had been administered 10 days before T4. To explore the 
effect of this treatment on the horse faecal microbiota composition, additional faecal samples were collected 3 
days post-dosing (samples labelled T4*).

Meteorological data. Meteorological data were obtained from a local weather station15 for each sampling 
occasion. This station was not functioning during the first 4 sampling occasions and therefore the second nearest 
weather station to the sampling site was used16. The data collected included the lowest, average and highest tem-
perature; rainfall; and maximum and average wind speed.

DNA extraction, creation of amplicon libraries, sequencing and bioinformatics analysis. DNA 
was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, UK) according to the manufacturer’s instructions 
with an additional step of bead beating and initial incubation at 95 °C instead of 70 °C. Amplicon libraries were 
created by PCR amplification of the V1–V2 variable regions of the bacterial 16S rRNA genes using the universal 
eubacterial 8F17 and 334R18 primer set and were submitted for sequencing using the Ion Torrent PGM sequencing 
technology (Life Technologies, UK). Sequence data were processed using the Quantitative Insights into Microbial 
Ecology pipeline (QIIME, version 1.9.1)19. This included splitting sequences between samples according to their 
barcode sequences, chimera identification and removal, clustering of sequences open-reference into operational 
taxonomic units (OTUs) at 97% identity threshold and building an approximately-maximum-likelihood phyloge-
netic tree. Detailed methods are given in Supplementary Information.

Data analysis. Statistical analyses were performed in R software environment (version 3.2.5)20 using the fol-
lowing add-on statistical packages: ‘phyloseq’ version 1.12.221, ‘ggplot2’ version 1.0.122, ‘nlme’ version 3.1–12123, 
‘vegan’ version 2.3-024, ‘cluster’ version 2.0.325 and ‘DESeq2’ version 1.8.126.

Data filtration and normalisation. Alpha diversity analysis was performed on a non-filtered, 
non-normalised OTU table27, whereas other analyses were performed following data filtration and normalisation. 
Data filtration involved excluding OTUs that were present in <10 samples (approximately 5% of the samples) or 
were represented by <20 reads from the total sequences. Data filtration has been previously reported to improve 
diversity analysis28 and statistical power to detect differentially abundant OTUs29. Data normalisation was imple-
mented by random subsampling (rarefying) to a minimum sequence depth of 9824 reads without replacement to 
consider unequal sequencing depths among samples.

To explore relative abundance of different bacterial phyla of the horse faecal microbiota, the data were con-
densed at the phylum taxonomic level and the mean relative abundance of these bacterial groups were presented 
in an area plot. Samples collected before and following anthelmintic administration (T3 and T4*) were compared 
for community diversity using the Wilcoxon-signed rank test and for community structure using permutational 
multivariate analysis of variance (PMANOVA) following calculation of Weighted-UniFrac, Bray–Curtis and 
Jensen–Shannon divergence dissimilarity metrics. Significant differences in community structure were identified 
for T4* and therefore these samples were excluded from any downstream analysis.

Cluster and ordination analysis. The data were clustered using principal coordinates analysis (PCoA) 
eigenvectors of a Bray–Curtis dissimilarity matrix derived from the normalised OTU table. The most important 
eigenvectors were chosen and clustered using the partitioning around medoids algorithm (cluster::pam function 
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in R)30. The number of clusters (K = 3) was estimated using the gap statistic. Using these 3 clusters, non-metric 
multidimensional scaling ordination of a Bray–Curtis distance was performed. Weather data were compared 
between identified clusters using a Kruskal–Wallis rank sum test followed by Dunn’s post hoc test for multiple 
comparison31 and Benjamini Hochberg adjustment for false discovery rate32. The results of this analysis were 
presented in boxplots.

Constrained ordination analysis was performed using distance-based redundancy analysis (db-RDA). The 
model was built using the vegan::ordiR2step function in R. This function performs automatic forward step-
wise selection of explanatory variables using the two stopping criteria suggested by Blanchet et al.33. The func-
tion attempts to maximise the adjusted R2 at every step, and the procedure stops when the adjusted R2 starts to 
decrease, the adjusted R2 of the full model is exceeded, or the selected permutation significance level (p = 0.05) is 
exceeded24. Explanatory variables available for model building included: time of sample collection, the highest, 
average and lowest ambient temperature, highest and average wind speed and rainfall as continuous variables. 
Season of sample collection, horse identity and type of feed were included as categorical variables. Season of sam-
ple collection was classified as spring (March–May), summer (June–August), autumn (September–November) 
and winter (December–February), while feed was classified as haylage, and grass plus haylage. Variation in the 
data due to individual horse effect was excluded from model building through the use of the argument ‘Condition’ 
in the vegan::capscale function in R.

Alpha diversity analysis. Diversity measures calculated included Chao1 index34 for species richness  
(a measure of the number of species within a community) and Shannon35 and Simpson36 diversity indices for 
population diversity (a measure of both species richness and their relative abundance within a community). 
The change of these estimates over time was first explored using loess regression curves then modelled by linear 
mixed-effects (LME) modelling procedures. A random intercept and slope model was built for each measure with 
sampling time included as a fixed effect variable and horse was included as a random effect. The models were built 
using the maximum likelihood method which allowed exploring the effect of incorporating higher order terms of 
time into models using Akaike information criterion (AIC)37. Higher order terms that resulted in a reduction of 
AIC by at least 2 were considered significant.

The effect of weather data on alpha diversity measures was also investigated using the LME modelling pro-
cedures. Due to high correlation between weather data, six models were built for each diversity measure, each 
including different combinations of weather data variables. The model that best fitted the data was chosen based 
on the value of AIC. This was followed by adding other explanatory variables (season of sample collection and 
type of feed) into the chosen model where the improvement in model fit was tested using AIC. Interaction and 
higher order terms were also tested in the final model.

Beta diversity analysis. The community stability over time was investigated by calculating three dissimi-
larity metrics (Weighted UniFrac, Bray–Curtis, and Jensen–Shannon divergence) as sample to sample distances 
(distances between consecutive time points) within each horse30. The trend of change over time was first explored 
using loess regression curves followed by fitting random intercept and slope LME models. Within each model 
the sampling time points were included as a fixed-effect variable and the horse as a random effect. The number of 
higher order terms that best fitted the data was identified by comparing models with different higher order terms 
using AIC. Predication plots from final models with 95% confidence limits were created. The effect of weather 
data on calculated distances was also investigated as was described for the alpha diversity measures.

Differential abundance analysis. Differentially abundant OTUs that were associated with feed, highest 
temperature, rainfall and season (these variables were selected based on the results of cluster and diversity anal-
ysis) were identified using negative binomial (NB) models. The models were built using the DESeq. 2::DESeq 
function in R. Before fitting models, the data were further filtered to remove OTUs that were present in less than 
25% of the samples. Variance stabilising transformation of the data was executed as a part of model fitting and 
therefore the data were not rarefied in advance. A separate model was run for each of these variables and the 
number of differentially abundant OTUs (adjusted p of < 0.01) were arranged in a Venn diagram.

Data availability Statement. The datasets generated during and/or analysed during the current study are 
available from https://figshare.com/s/ee85a3e1fdd5c68ed746.

Ethics approval and consent to participate. The study was approved by the University of Liverpool 
Veterinary Research Ethics Committee (VREC207) and informed consent was obtained from the owner of the 
horses. All experiments were performed in accordance with relevant guidelines and regulations.

Results
A total of 166 faecal samples were collected during the study. These generated 4,304,569 high quality, 
non-chimeric sequences that were annotated to 58,544 OTUs. The distribution of the number of reads across 
samples was as follows: a minimum of 10,220 reads, a maximum of 62,200 reads, a median of 24,180 reads, and 
an interquartile range of 20,830–29,960 reads. Filtration of low abundant taxa resulted in exclusion of 201,757 
sequences (4.7% of the original total read count) and 46,211 OTUs, leaving 12,333 OTUs available for further 
downstream analyses.

The relative abundance of different bacterial groups, condensed to the phylum taxonomic level, is shown 
in Fig. 1 and Supplementary Table S2. The communities were dominated by members of the Firmicutes and 
Bacteroidetes phyla with a total of 6 bacterial phyla identified at a relative abundance of ≥1%. These included 
Bacteroidetes, Firmicutes, Fibrobacteres, Spirochaetes, Verrucomicrobia and Proteobacteria. Taxa that belonged 
to an unknown phylum represented 2.4% of the communities. A prominent pattern of change of relative 
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abundance of different bacterial phyla was identified (Fig. 1). Some bacterial phyla such as Bacteroidetes and 
Proteobacteria showed relatively stable relative abundance throughout the study period, whereas others including 
Firmicutes, Fibrobacteres, Spirochaetes and Verrucomicrobia showed a biphasic change over the 12 months stud-
ied. The increase in relative abundance of Fibrobacteres and Spirochaetes was associated with a decrease in rela-
tive abundance of Firmicutes and Verrucomicrobia and vice versa. This pattern of change in relative abundance 
over time was consistent among all horses included in the study (see Supplementary Fig. S2). A total of 27 bac-
terial classes were identified in the data based on the RDP classifier38. Classes that were present at ≥1% included 
Bacteroidia, Clostridia, Fibrobacteria, Spirochaetes, Verruco-5, Erysipelotrichi and Alphaproteobacteria. Of all 
OTUs identified in the dataset, 81.23% and 96.1% were not assigned to a genus or a species taxonomic level, 
respectively.

Cluster and ordination analysis. The gap statistic suggested that there were 3 clusters in the data. 
Ordination analysis using non-metric multidimensional scaling of a Bray–Curtis dissimilarity matrix derived 
from the OTU table is shown in Fig. 2. Weather data apart from rainfall differed significantly among these clusters 
(see Supplementary Fig. S3). Variables retained in the final model of db-RDA included season of sample collec-
tion, type of feed (grass vs. grass &haylage), and the lowest and highest ambient temperature (Fig. 3). The model 
explained 13.2% of variation in the data (adjusted R2 = 0.13).

Alpha diversity analysis. A non-linear trend of change over time was prominent in exploratory loess 
regression plots (see Supplementary Fig. S4). Testing of different higher order terms of time within the LME 
models showed that a significant non-linear trend (cubic polynomial) was evident only for the Shannon diversity 
index (see Supplementary Fig. S5). Table 1 presents the results of LME modelling of three diversity measures. Of 
the environmental variables tested, only ambient temperature was significantly associated with the alpha diversity 
measures.

Beta diversity analysis. Distances between consecutive sampling time points showed a clear non-linear 
trend of change over time on exploratory plots (see Supplementary Fig. S6). Modelling these distances using LME 

Figure 1. An area plot of relative abundance of different bacterial phyla identified in the data.

Figure 2. Non-metric multidimensional scaling of a Bray–Curtis dissimilarity matrix derived from the 
normalised OTU table. The sampling time points were coloured by clusters identified in the data.
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Figure 3. Ordination plots of the first two axes from the distance-based redundancy analysis model. The 
figure displays biplot scores of constraining variables (coordinates of the tips of the vectors representing the 
explanatory variables) (a) and centroids of factor constraints (coordinates of categories of factor variables) (b). 
The dots represent samples collected during the study period.

Variable Value Std. error DF t-value p value

Regression of alpha diversity measures against time:

Chao1 index

Intercept 8250.9 395.85 152 20.84 2.04 × 10−46

Time 108.36 20.75 152 5.22 5.74 × 10−7

Shannon diversity index

Intercept 6.92 0.09 150 76.99 1.76 10−122

Time 0.33 0.63 150 0.52 0.61

Time2 −1.01 0.42 150 −2.39 0.02

Time3 1.098 0.63 150 1.73 0.085

Simpson diversity index

Intercept 0.99 0.00 152 420.23 6.80 × 10−235

Time 0.0001 0.00 152 0.93 0.36

Regression of alpha diversity measures against other explanatory variables:

Chao1 index

Intercept 11236.68 406.56 152 27.64 3.71 × 10−61

Highest temperature −101.275 23.67 152 −4.28 3.32 × 10−5

Shannon diversity index

Intercept 6.72 0.11 152 63.43 2.89 × 10−111

Lowest temperature 0.02 0.007 152 3.22 0.002

Table 1. Results of linear mixed-effects modelling of alpha diversity measures.
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modelling showed that the trend of change was best described with a fifth-degree polynomial term of sampling 
time. Prediction plots from these models are given in Fig. 4. The association between various environmental var-
iables and calculated distances was also investigated using LME models and results of final models are presented 
in Table 2. Highest ambient temperature and rainfall were significantly associated with the three dissimilarity 
measures calculated from the data.

Differential abundance analysis. The number of OTUs associated with each of the variables tested in NB 
models are given in Fig. 5. Large number of these OTUs were shared between the tested variables which indicated 
high correlation between these variables.

Discussion
This work is novel in being the first study to investigate the faecal microbiota of horses over a prolonged period 
enabling seasonal effects to be studied. This work is important in providing baseline information about the nor-
mal horse faecal microbiota. This information is essential prior to exploring differences between the faecal micro-
biota in normal horses under conditions of minimal management and those managed more intensively (e.g. 
concentrate feed and stabling) or with horses that have developed or are at high risk of colic. This work demon-
strates that the faecal microbiota is highly dynamic and responds distinctly to dietary factors and ambient envi-
ronmental conditions in normal horses. Furthermore, whilst a clear pattern of change in the faecal microbiota 
was evident over the 12 months under investigation, this did not result in any clinical abnormalities (including 
colic), developing in the study horses. These findings suggest that any proposed relationship between change in 
management and altered risk of colic that solely considers shifts in gut microbiota composition is too simplistic 
and merits more detailed investigation.

The faecal microbiota of the study horses was found to be in a continuous process of adaptation and change 
in association with alterations in grass, supplementary forage and ambient weather conditions. Several studies 
have reported changes in the faecal microbiota of horses receiving different diets39,40, which is consistent with the 
findings of the current study. Dynamic adaptation of the gut microbiota has been observed in people41 and similar 
seasonal shifts in gut microbiota composition in response to seasonal dietary variation have also been reported 
for other animal species42,43. Based on these results, it is plausible that intestinal dysfunction/colic could develop 

Figure 4. Regression of distances between consecutive sampling time points against time. Red lines are the 
regression lines from the linear mixed-effects models and the shades are the 95% confidence limits of the 
prediction. The time was included as a fifth-degree polynomial term.
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Variable Value Std. error DF t-value p-value

LME modelling of beta-diversity measurements against time:

Bray–Curtis

Intercept 0.56 0.01 141 90.63 7.17 × 10−127

Time −0.45 0.09 141 −5.30 4.35 × 10−7

Time2 0.17 0.10 141 1.66 0.1

Time3 −0.18 0.01 141 −1.81 0.07

Time4 0.28 0.10 141 2.70 0.008

Time5 0.37 0.08 141 4.82 3.69 × 10−6

Jensen–Shannon

Intercept 0.28 0.005 141 57.78 4.74 × 10−100

Time −0.33 0.06 141 −5.51 1.64 × 10−07

Time2 0.13 0.08 141 1.64 0.10

Time3 −0.13 0.08 141 −1.58 0.12

Time4 0.20 0.08 141 2.38 0.02

Time5 0.26 0.06 141 4.13 6.19 × 10−5

Weighted UniFrac

Intercept 0.22 0.006 141 38.42 1.42 × 10−76

Time −0.28 0.06 141 −4.63 8.35 × 10−6

Time2 0.13 0.08 141 1.65 0.10

Time3 −0.06 0.05 141 −1.20 0.23

Time4 0.22 0.08 141 2.66 0.01

Time5 0.20 0.06 141 3.57 4.8 × 10−4

Regression of beta diversity measures against other explanatory variables:

Bray–Curtis

Intercept 0.48 0.02 144 27.08 2.30 × 10−58

Highest temperature 0.004 0.001 144 4.12 6.42 × 10−5

Rainfall 0.01 0.004 144 3.62 4.07 × 10−4

Jensen–Shannon divergence

Intercept 0.22 0.013 144 16.39 9.88 × 10−35

Highest temperature 0.003 0.001 144 4.04 8.78 × 10−5

Rainfall 0.009 0.003 144 3.4 8.84 × 10−4

Weighted UniFrac

Intercept 0.17 0.01 144 13.62 1.16 × 10−27

Highest temperature 0.003 0.001 144 3.73 2.75 × 10−4

Rainfall 0.008 0.002 144 3.06 0.003

Table 2. Results of linear mixed-effects modelling of beta diversity measures. As a measure of stability of the 
community over the course of sample collection, 3 dissimilarity metrics were measured between consecutive 
sampling time points within each horse and regressed against time and environmental variables.

Figure 5. A Venn diagram showing the number of differentially abundant OTUs significantly associated with 
each of tested variables.
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either because of lack of adaptation of gut microbiota in some horses or due to major shifts/disruption in gut 
microbiota composition as a response to marked, sudden management changes11.

In the current study, it was not possible to determine how quickly the gut microbiota may adapt to a change in 
diet because of the duration of time between the sampling occasions and the gradual change in diet (e.g. natural 
gradual decrease in the amount of grass available to the horses under investigation). It was not possible to per-
form more frequent sampling due to financial constraints and this is an area for future research. Previous studies 
have reported that the composition of the horse gut microbiota can shift in response to new diets within 4–6 
days9,12. It has been shown that dietary variations among animal species including humans and horses is not only 
associated with compositional differences in gut microbiota, but also functional differences i.e. there is a strong 
relationship between the microbial community composition and function44. Compositional adaption of the gut 
microbiota has been reported to be rapid; however, functional adaptation may take longer. A study that investi-
gated the fermentation capacity of the pig gut microbiota following a dietary shift reported that a 19-day period 
was not enough to achieve a full adaptation to a different diet45. Similar studies in horses, however, are lacking and 
this is an area that merits further investigation.

The results of the current study suggest that fluctuations in the composition of the horse faecal microbi-
ota associated with weather and dietary (forage) variations is normal, although only a small number of normal 
horses were studied. Several epidemiological studies in horses have reported increased risk of colic associated 
with changes in feeding practices3,5,7,46. Both the current study and previous horse microbiota studies reported 
significant inter-horse variation in gut microbiota composition14,40,47, which may partially explain the variation 
in the propensity of some horses to develop colic. Further work is required in this area including more frequent 
sampling in horses undergoing sudden changes in diet to further identify changes in the faecal microbiota that 
may occur and how these differ in a larger number of horses, including horses at greater risk of colic.

The influence of weather (ambient temperature and rainfall) on the horse faecal microbiota identified in the 
current study is interesting. This effect could be either due to direct correlation between weather conditions and 
feed types available for the horses, or because of the effect of weather on the composition of environmental bac-
teria (soil and grass/haylage microbiota). Alterations in the composition of soil microbial populations have been 
associated with changes in weather conditions. A study that investigated the effect of rainfall on grassland soil 
microbial communities reported a significant influence of soil moisture and temperature on the composition of 
associated microbial populations48. Environmental bacteria ingested with feed can survive enzymatic digestion 
in the stomach and small intestine and can colonise the hindgut resulting in shifts in gut microbiota. This was 
confirmed in a recent human study49 where foodborne microbes were identified in faecal microbiota. This is also 
an area for further investigations in horse microbiota studies.

The most prominent change in the horse gut microbiota identified in the current study was the increased rel-
ative abundance of members of the phylum Fibrobacters and Spirochaetes when haylage was introduced into the 
horses’ diet. This increase appeared to be associated with a decrease in the relative abundance of members of the 
phylum Firmicutes. Fibrobacteres was the third most abundant phylum in the current study with a relative abun-
dance that ranged from 3.45% to 23% across the study period which is in agreement with previous horse micro-
biota studies50–52. The members of the phylum Fibrobacteres are defined as anaerobic, Gram-negative, non-spore 
forming, cellulolytic, non-motile rods. It includes a single genus (Fibrobacter), previously classified under the 
genus Bacteroides, with only two culture representatives including: F. succinogenes and F. intestinalis53. This bacte-
rium is known for its efficacy in hydrolysing plant cellulose54, which may explain its increase in association with 
introduction of haylage into the horses’ diet.

The horse faecal microbiota was dominated by members of the Firmicutes and Bacteroidetes phyla in the cur-
rent study. This finding is consistent with multiple studies that used 454-Pyrosequencing technology to sequence 
2 or 3 hypervariable regions of the bacterial 16S rRNA genes from faecal samples9,39,40. A recent series of studies 
that characterised the horse faecal microbiota reported that the communities were dominated by members of 
Firmicutes and Verrucomicrobia phyla52,55. The latter studies originated from the same institution and used the 
Illumina MiSeq sequencing technology to sequence a single hypervariable region of the bacterial 16S rRNA 
genes. Variation in the results obtained between sequencing platforms, number and the type of 16S rRNA hyper-
variable regions used have been widely reported56–59 and could explain the differences between the studies. In 
the current study, the V1–V2 variable regions were chosen based on previous work investigated the horse faecal 
microbiota39,50 and prior experience working on these regions in the authors’ laboratory. Furthermore, 2–6 hours’ 
storage of faecal samples at room temperature prior to freezing in the current study was unlikely to affect the 
results obtained60.

There was an obvious lack of resolution of sequence data generated in the current study, as a large proportion 
of OTUs were not identified at genus or species taxonomic levels. It is unknown however, if this was associated 
with any technical errors or with the type of the NGS technology used. Similar observations were described 
in a study that used the 454 Pyrosequencing technology to characterise the faecal microbiota of a group of 
Thoroughbred horses and it was suggested that this may be due the presence of numerous previously uncharac-
terised bacteria in the horse gut40. The horses in the present study also consisted of a variety of ages and breeds 
and underwent other management changes such as administration of anthelmintics. However, these horses and 
their management were reflective of the way a broad number of horses are managed in the UK and provides a 
‘baseline’ regarding the faecal microbiota composition in this population of horses over a 12-month period.

In conclusion, the current study has provided important baseline information about variation of the faecal 
microbiota in a group of horses managed non-intensively at grass over a 52-week period. These findings suggest 
that changes in the faecal microbiota are a normal adaptation to dietary and environmental changes in managed 
horses. More research is required to investigate how the equine microbial community composition and function 
change in response to other more intensive management changes and whether colic is related to associated indi-
vidual differences in disturbance of the gut microbiota.
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